

The Future of Packaging

Dr John Williams

Who we are and what we do

UK-based plastic materials manufacturer

Six-year, £ multimillion investment

Hydropol – a highly functional flexible plastic that has multiple sustainable end-of-life options

History of plastics

13

Parkesene 1862

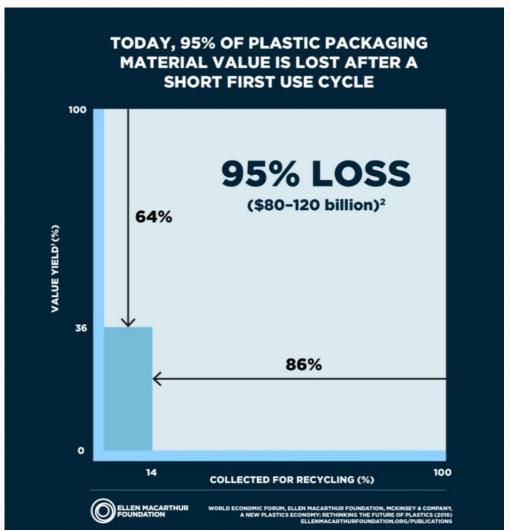
Bakelite 1907

PVC 1927

PVOH 1931

PP 1954

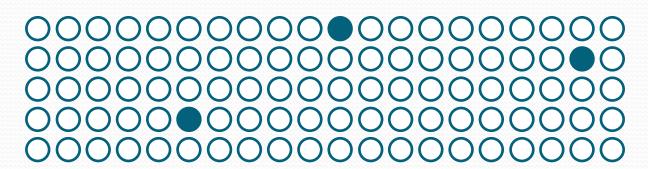
Kevlar 1964


Focus on functionality, not end of life

The Plastic Age

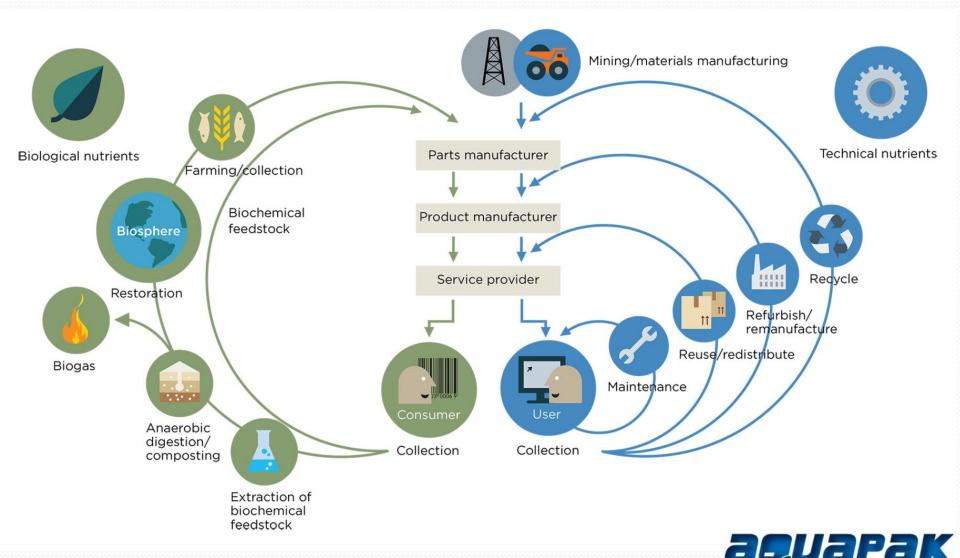
Plastic waste: a global failure

Flexible plastics in the UK


762,000 tonnes p.a.

12% more than the capacity of Belvedere, the UK's largest waste facility **54**% post-consumer

carrier bags, pasta and rice bags, and the film on ready meals

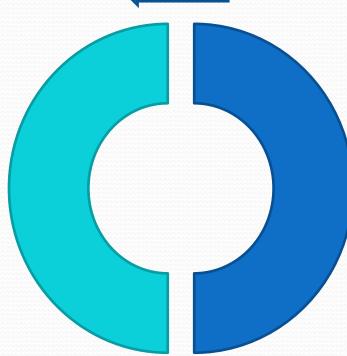

Only 1 in 5 local authorities collect it...

...only 3% is recycled

What is a Circular Economy?

Plastic in a circular economy

Existing polymers are holding us back.

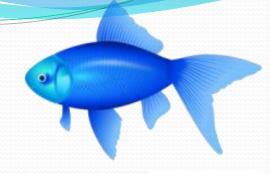

We need new materials – **but they must fit circular principles**.

PRODUCT WASTE

Is it **compatible** with existing manufacturing equipment?

Functional – does it serve its purpose well?

Versatile – can it be used for multiple applications?


Is it **compatible** with existing waste management equipment?

Recyclable – can I sell high quality material back to manufacturers?

Biodegradable – will it degrade in standard processes & times?

End of life options

Biodegradability

- Marine conditions no toxicity, low persistence
- Composting & Anaerobic Digestion standard residence times, no "flake" residues, CO₂ + biomass
- Food packaging, food waste bags reduce depackaging

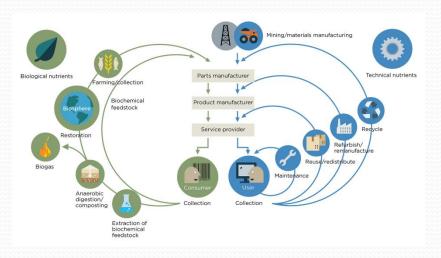
Recyclability

- NIR fingerprint for materials sorting
- Soluble and recoverable from waste water (chemical recycling)
- Reduce contamination of other target materials

New Plastics Economy, Superpolymers and Moonshoot Innovations

- Bio-based materials
 - Compostable food packaging e.g. Vegware
 - Wool insulation and packaging material e.g. Woolcool
 - Starch-based bags e.g. Starpol from Aquapak
- Bioplastics
 - Flexible cellulose films e.g. Futamura
 - Rigid polylactic acid (PLA) e.g. Floreon
- Petrochemical plastics designed for a circular economy biodegradable and recyclable (e.g. Hydropol from Aquapak)

'MOON SHOT' INNOVATIONS ARE ESSENTIAL TO THE TRANSITION TO A NEW PLASTICS ECONOMY (SELECTED EXAMPLES)


WORLD ECONOMIC FORUM, ELLEN MACARTHUR FOUNDATION, MCKINSEY & COMPANY, A NEW PLASTICS ECONOMY: RETHINKING THE FUTURE OF PLASTICS (2016) ELLENMACARTHURFOUNDATION.ORG/PUBLICATIONS

SOURCE: Project MainStream analy

Conclusions

- Plastics are here to stay
- Different polymers will solve different problems
- Designers, retailers and waste managers are around the table – building a new plastics economy
- Recycling and waste management specialists need to support the "front end" with advice and adaptability

The future of packaging **must** be circular.

